
Finding the operating point of 
Eulerian flow machines 
J .  R.  T i p p e t t s *  

Examples of Eulerian flow machines (EFM) are turbomachines, jet pumps and vortex 
amplifiers working with incompressible non-cavitating flow. They are 'Eulerian' in 
the sense used by Paynter 2 in his work on turbomachines subject primarily to 
dynamic flow forces. Efficient methods ar.e specified in this paper for finding the 
operating point of an EFM from its characteristics and any two state-defining 
variables. A trivial example is to find the torque and pressure of a pump when the 
speed and flow are given. This is simple because the usual constant-speed charac- 
terisation favours the solution, but if other pairs of variables are given, the problem 
is less simple. For jet pumps or the many "power fluidic' devices the variety of 
problems is much greater because of combinatorial aspects, although the fluid 
mechanics is analogous to that of the turbomachine. Solution procedures are 
specified first for turbomachines; there are six "algorithms'. For general "3-terminal" 
EFM (jet-pumps etc) it is shown that there are 108" characterisation formats and 
that the 30 listed algorithms enable any of them to be solved given any possible 
variable-pair. Graphical and computational implementations are described 

K e y  w o r d s :  turbomachines, power fluidic& fluid mechanics, 
mathematical modelling 

The type of problem considered here is: given the 
values of two flows or pressure-drops, find the operat- 
ing state of a vortex amplifier from its characteristics. 
A similar but easier task is to find the operating point 
of a turbomachine given the shaft torque and the 
pressure-difference. 

The vortex amplifier is an example of many 
power-fluidic devices for which the same problem 
can occur so general solution methods are needed. 
The methods should be efficient because, in simulat- 
ing the operation of a multi-element circuit, the 
operating point of an element may have to be found 
many times. 

The power-fluidic devices are 3-terminal ele- 
ments meaning that they have three pipe-connections 
to the external network and that the flow is incom- 
pressible. Examples of these are jet-pumps, venturi- 
like 'RFD' devices, flow junctions, special Y-joints, 
turn-up vortex amplifiers, opposed jet amplifiers, and 
wall-attachment diverters with zero control flows. 
They are used in fluid-handling systems (not informa- 
tion handling as is often thought in the context of 
fluidics) as described elsewhere 1. 

'Eulerian'  has the same meaning as that used 
by Paynter 2 in describing turbomachines subject to 
purely dynamic forces and with incompressible flow. 
The characteristics of such an ideal Eulerian Tur- 
bomachine (ETM) are constant when non-dimension- 
alised in terms of the usual flow and pressure 
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coefficients. Similarly, the ideal Eulerian 3-Terminal 
Element (E3TE) also has constant non-dimensional 
characteristics. Collectively these are Eulerian flow 
machines. 

D e c o d i n g  

The characteristics of a rough pipe are described by, 
for example, the Colebrook formula. That is, the oper- 
ation of the pipe is 'encoded'  and we could say that 
finding the 'operating' point of the pipe given, say, 
the flow, is a matter of "decoding'; in this case it means 
finding the pressure-drop. Even for a device as simple 
as a pipe, decoding is not trivial as can be judged by 
the effort put into devising easier-to-solve formulae 
than the Colebrook equation. 

For the pipe, only two types of causality need 
to be considered; given the flow find the pressure-drop 
and given the pressure-drop find the flow. For the 
turbomachine or for the 3-terminal element many 
more forms of causality must be handled by the decod- 
ing procedure. Apparently for the turbomachine, 
decoding is not perceived as a general problem. Prob- 
ably, this is because the usual constant-speed charac- 
teristics suit the majority of cases so that there is no 
decoding problem; one just reads off the pressure 
given the flow, for example. When a more awkward 
problem arises, it is solved one way or another without 
being regarded as part of a general problem. It is 
appropriate, therefore, to consider the turbomachine 
first because it is simpler than the 3-terminal element 
and because there does not appear to be a general 
solution procedure. 
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The Eulerian turbomachine 

The  E T M  is characterised by speed, torque,  flow and 
pressuret  (n, t, q and e). Power  is often used instead 
of torque but  basically gives the same informat ion 
and the use of torque gives a closer analogy to the 
3-terminal elements. 

Characterisation of ETMs 

The  usual method  of characterisation is by plot t ing 
e and t as functions of q with n held constant. There  
is a hierarchy in this allocation of variables. Th e  speed 
is the pr imary independent  variable, the flow is the 
second. The  pressure and torque are dependent  vari- 
ables with, by general usage, the pressure being the 
more important.  If the tu rbomachine  were not 
Euler ian,  then sets of characteristics would  be needed  
to cover a range of speeds. If it is Eulerian,  however ,  
characteristics at one speed can be extrapolated to 
predict  the operat ion at other speeds. Fur thermore ,  
the effect of changes in fluid density and in overall 
scale of the machine  can be found.  These effects are 

usually taken into account  by using non-dimensional  
variables but  in the decoding problems considered 
here, the fluid density and the size of the device are 
assumed to be known.  Therefore ,  the ful ly non- 
dimensional  representat ion is not used. This greatly 
simplifies the nomencla ture  and focusses at tention on 
the most important  aspect of the decoding problem. 

Characterising functions 

The  E T M  is considered to he characterised by two 
funct ions fe and ft relating the four variables accord- 
ing to: 

e = fe(q) I 

t = ft(q) n = constant 

These could  be graphs, as shown in Fig 1, or represen- 
ted by an array of values in a computer  giving p points 
on the characteristics in the general form 

n~ qt el  t l  

n2 q2 e2 t2 

t Pressure means pressure-difference from here on. n, q. ep 

Notation 

a, b, c 

B , C  

E 

f, 

F~ 
F~ 
F1, F2, 
e t c  

m 

n 

q 
0 

t 
T 
X, y, Z 

Either  flows or pressure drops in gen- 
eralised t reatment  of EFM.  
Non-dimensional  variables, ratios of 
flows or pressure-drops. 
Pressure-drop through a tur- 
bomachine  or other device (sub- 
scripted). 
Normalised e, ie e /n  2 for a tur- 
bomach ine  or e / re fe rence  pressure- 
drop for 3-terminal element.  
Characterist ic giving e in terms of q 
wit}~ n constant. 
Characteristic giving t in terms of q 
with n constant. 
Characteristic giving E in terms of O. 
Characteristic giving T in terms of O. 
Funct ions  interrelating various nor- 
malised variables. 
Scaling factor relating similar operat- 
ing points in terms of a ratio of flows 
(or speeds for the Euler ian  tur- 
bomachine) .  
Shaft speed of rotation of a tur- 
bomachine.  
Flow. 
Normalised flow, q /n  for a tur- 
bomachine  of q / re fe rence  flow for 
3-terminal element.  
Ratio or coefficient formed from all 
possible pairs of state-defining vari- 
ables of 3-terminal element.  
Torque.  
Normalised t, ie t /n  2. 
Either  flows or pressure-drops in gen- 
eralised treatment of 3-terminal 
element.  

X 

Y 

Z 

Normalised value of x, the dependent  
variable in homogeneous  characteri- 
sations or the independent  variable in 
hybr id  ones. 
Normalised value of y, dependen t  
variable in homogeneous  characteri-  
sations. 
Normalised value of z, ' r edundant '  
variable obtained by summation of X 
and Y. 

Subscripts 

c Control  port  (of a vortex amplifier). 
g Given value of variable, has same 

meaning when  used as second sub- 
script. 

n Newly  created value. 
o 'Old '  or original value. 
p pth row of data in list of p charac- 

terised operating points. 
x Control- to-supply pressure-drop. 

Abbreviations 

E D T  Euler ian  data transformation 
whereby  similar operating points are 
scaled from an original point.  
Euler ian flow machine.  
Euler ian  turbomachine.  
Euler ian  3-terminal element.  
vortex amplifier. 
3-terminal e lement  such as a jet p ump  
or vortex amplifier. 

EFM  
E T M  
E 3 T E  
v a  

3TE 
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Flow, q 

Fig 1 Constant speed pump characteristics 

where  the  entries in the n co lumn  could  be  replaced  
by  a single value in represent ing the constant-n  
characteristics.  

Eulerian data transformation 

A proper ty  of the E T M  is that  if the ' f low-l ike '  vari- 
ables n and  q are bo th  mul t ip l i ed  by  a factor  m say, 
and the ' force- l ike '  variables  e and  t are mul t ip l i ed  
by  the square of that  factor, then  the newly  created 
values also represent  an opera t ing point  of the ETM.  
I f  these opera t ing points  are denoted  'o ld '  and  ' n e w '  
(subscripts o and  n) then  the re la t ionship is g iven by  

old = no qo eo to 

new = mno mqo meeo mZto 

The  generat ion of a new opera t ing  point ,  or an array 
of them,  according  to this scaling law is an 'Eu le r i an  
data t rans format ion '  (EDT).  For  example ,  the charac-  
teristics at an 'o ld '  value  of n can be t rans formed into 
those at a new value by  subject ing each point  to an 
E D T  for which  m is equal  to n,/no. 

Analogously  this can be represented graphi-  
cal ly by  plot t ing the characterist ics on doub le  
logar i thmic  graph paper ,  as shown in F ig  2. I f  the 
characterist ics are on a m ovab l e  overlay then  shif t ing 
the over lay  d iagonal ly  upwards  a long a l ine wi th  a 
gradient  of 2 represents  an E D T  with  an m factor  
given by  the hor izontal  shift. 

Methods of decoding for the ETM 
Any two of the four  var iables  n, q, t, e, specify  an 
opera t ing point.  The  decod ing  p rob lem is to find the 
other  two variables  at that  point .  The  ease wi th  wh ich  
this is done  depends  on which  var iables  are given.  I t  
is easiest if n and  q are given. In  general  all possible  
pairs of variables  must  be  cons idered  and  there are 
six such pairs since it is a choice  of two-out-of-four .  

Operating point of Eulerian flow machines 

Method 1 

The  p rob l em can be solved in various ways and  one 
of these is suggested in an obvious  way by  the EDT.  
Suppose n and  q are given but  n is not the charac-  
terised value;  the process is as follows: 
(1) generate  new characterist ics by  an E D T  mak ing  

n equal  to the specified value of n. 
(2) In terpola te  f rom the new e and  t values those 

wh ich  correspond to the specified value of q. 
Step 1 is s t raightforward,  at least for a computer .  Step 
2 involves searching amongs t  the values in the q 
co lumn  for those above  and  be low the specified value 
and then interpolat ing cor responding  values of e and 
t at this point.  

The  procedure  can be app l ied  for any  g iven 
pair  of variables. Consider  as a fur ther  example  the 
case when  e and t are given: 
(1) Genera te  constant  e characterist ics wi th  an E D T  

for which  m is def ined by; 

k eo/ 

here en is the spcified value and eo represents  
values in the original  co lumn  of data. Unl ike  the 
case where  n was changed,  m is reca lcula ted  for 
every data point  (ie each row of the array). 

(2) Look  down  the co lumn  of t values and  interpolate  
be tween  adjacent  points  to find q and  n. 

In  this case step 2 is, in effect, an inversion of the 
scaled funct ion  ft but  the significance of this depends  
on the me thod  of in terpolat ion and  on whe ther  ft is 
monotonic .  I f  l inear in terpolat ion were  used then  
there would  be  no difference in in terpolat ing for any  
of the variables  but  this benefit  would  have  to be  
we ighed  against  the accuracy.  

Critique of Method I 

Method  1 solves the decoding  p rob l em rather  in- 
efficiently in terms of computa t iona l  effort. This  is 
because,  unless by  good for tune n is the same as in 
the original  data, the whole  array has to be  trans- 
formed.  For  use in s imulat ing a fluid system in wh ich  
perhaps  m a n y  hundreds  of solutions are needed  this 
inefficiency is a drawback.  

An improved  me thod  relies on a famil iar  trade- 
off in that  pre-ca lcula ted  data requir ing more  m e m o r y  
can be used to s impl i fy  the decoding  calculations.  

Method 2 

Three  sets of data are stored in wh ich  successively n, 
q, and  e are he ld  constant.  Arbitrari ly t is left out of 
this but,  mathemat ica l ly ,  any of the other  variables  
could  have  been. These  arrays are genera ted  by  an 
E D T  operat ing on the original  data. T h e  process pro- 
duces a total of 9 p + 3  values to be stored. (The '3 '  
be ing  the constant  values of n, q and  e). 

The  decoding  process for a specific var iable-  
pair  is: 

Values given: eg and  tg 
(1) Fo rm the ratio m = (eg/ec) 1/2 then  get the trans- 

fo rmed  value of tg: 

tn = m2tg 
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(2) Interpolate  in the constant-e characteristics to find 
values of n ,  and q,  corresponding to the value 
of tn. 

(3) Transform n.  and qn baek to give their  true values 
using the sealing factor m: 

n = n n / m  

q = q , / m  

This then solves the problem wi thout  the need for 
any array transformation. 

Other  pairs of given variables are treated in a 
similar way but  not ing that m is defined direct ly as 
a ratio of the variables q and n and as the square root 
of the ratios of variables e and t. 

Only  three sets of characteristics have to be 
stored because a given pair of variables is bound  to 
contain one of the three held constant. 

I m p r o v e m e n t  on M e t h o d  2 

Further  improvement  can be explained by reference 
to the logari thmic plot shown in Fig 2. Consider  a 
specific given variable-pair  and the consequent  pro- 
cedure as follows: 

given q~ and tg 
(1) Ident i fy  the point  with coordinates qg, tg On  the 

logari thmic grid. 
(2) Note the upward  diagonal  shift needed to make 

the q - t  characteristics pass through qg, tg. The  
horizontal  shift gives m from which  the other 
values can be found  or else they are simply read 
off from the shifted characteristic. 

~and • 
./ 

J 

F "t" and q 

/ /  i / 

j ~ , , /  Torque 

Logarithmic 
grid 

Fig  2 L o g a r i t h m i c a l l y  p lo t ted  p u m p  character is t ics  
g iv ing  e x a m p l e s  o f  s o m e  g iven  variable-pairs  

The  need for a movable  overlay is avoided,  
however ,  by drawing a line through the point  qg, tg 
with a gradient of 2 to intersect the q - t characteristic. 
The  horizontal  displacement  of the intersection point  
from qg gives the m factor by which  the data at the 
intersection operating point  should be t ransformed to 
give the values of e and n. 

The  procedure  is less straightforward for other 
pairs of variables; for example,  consider e and t given: 

These values can only be represented by 
horizontal  lines on the logari thmic grid and it would  
be necessary to shift the overlay until  s imultaneously 
these lines intersected the e and t curves at the same 
value of q, ie with the intersection points vertically 
aligned. This is not convenient  but  it should be noted 
that the vertical distance between e and t represents 
a ratio of one to the other, and that the al igned inter- 
section points is therefore  the coinc idence  of that ratio 
in the characterising functions. Suppose the ratio t i e  
were inc luded as an auxiliary funct ion of q in the 
plot ted characteristics. This  would greatly simplify 
the procedure  which is specified as follows: 

values given: eg and t, 
(1) Form tg/eg then find this value on the t i e  charac- 

teristic and the corresponding value of q. 
(2) At this value of q find the value of eo from the e 

characteristic. 
(3) F ind  the factor m to transform q and n from the 

characteristics to values at the operating point,  ie: 

m = (eg/eo) 1/2 q = mqo n = mno 

To implement  such a procedure  numerical ly  it is 
necessary to create ratios or coefficients such as t i e ,  
t / q  2 etc from all six variable-pairs which  are invariant 
when  subjected to an EDT.  Some of these coefficients 
like t / q  z (which represents the line on the logari thmic 
grid through qg, tg) are equivalent  to already-recog- 
nized coefficients, in this case the torque coefficient, 
but  it is useful to make a comprehensive  list for the 
purpose of decoding,  as described next. 

Method 3 

This third and more favoured me thod  for decoding 
the E T M  is described in terms of 'normalised '  vari- 
ables and functions as distinct from the dimensional  
variables used so far. As a consequence  the E T M  is 
considered to be characterised by the funct ions FE 
and FT as listed below with the coefficients and 
auxiliary functions: 

t . - q = Q  
n e } 

2. -~  = E = FE( Q ) 

t 
3. ~ = T = FT(Q) 

e E 
4. q2 Q2 F4(Q)" 

t T 
5. q--~ = Q2 - Fs(Q) 

t T 
6. - - F6(Q) 

e E 

normalised independent variable 

normalised characterising 
functions 

auxiliary functions 
giving the coefficients 
explicitly in terms of 0 
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These coefficients include all possible pairs of the 
variables n, q, e and t and, as required, they are 
invariant when subjected to EDTs. There is some 
latitude in their definitions for example q / e  1/~ could 
replace coefficient 4 but, arguably, those listed have 
the simplest formulation. Some coefficients are 
analogous or equivalent to coefficients used in well- 
established turbomachine technology, but the objec- 
tive here is to make a complete list of coefficients in 
their simplest form for decoding. 

The reason for expressing the coefficients 4, 5 
and 6 in terms of explicit functions (F4, F5 and F6) 
of Q is to speed the decoding process by storing extra 
pre-calculated data. The total array size for p data 
points is less than that for method 2, ie 6p as opposed 
to 9p+3.  

Specific decoding example for method 3 

A specific example will explain the notation used for 
specifying the general solution: 

Given eg and tg 
(1) Form the ra t io  tg/eg and by inverting F6 find Q. 

This process is denoted by F~ 1. 
(2) The value of Q is used in the characterising func- 

tion FE to give the value of E. This denoted by F-'F. 
(3) Since E and e are known n is found from the 

defining equation for E, ie: 

n 

This is denoted simply by "n'. 
(4) Since n and Q are known, q is formed from the 

defining equation for (9, ie: 

q = nQ 

This is denoted by "q'. 
The whole procedure can be represented by the sixth 
algorithm in the following complete list of decoding 
algorithms: 

Given 
Variables Algorithm 

1. n q FEe. FTt 
2. n e FE ~ FTqt 
3. n t FT 1FEqe 
4. q e F4~ FTnt 
5. q t F~ 1FEne 
6. e t FB 1FEnq 

An obvious feature is that F4, F5 and F6 are 
required only in their inverted form so, to maximise 
computational efficiency, they could be stored in this 
form. Another feature is that FE occurs more often 
than FT but this is because of an arbitrary choice in 
algorithm 6 where either could be used. 

Operating point of Eulerian flow machines 

Eulerian 3-terminal elements 

The vortex amplifier is an example of a 3-terminal 
element which highlights the similarities and the 
difference between 3TE and ETMs. 

The variables are defined by 

qs, qc 
and qo 

supply and control inflow and out- 
flow from the outlet 

es supply-to-outlet pressure drop 

ec control-to-outlet pressure drop 

ex control-to-supply pressure drop 

Characterisation variables can be chosen by omitting 
a redundant flow and pressure variable but even for 
the vortex amplifier the choice varies. In one charac- 
terisation format e~ is held constant, ec is the second 
independent variable and qs and qc are the dependent 
variables with ex and qo omitted (as shown in Fig 3). 
In another format, ec is constant, and ex and qc are 
represented as functions of q,. For elements such as 
jet pumps, constant flow characteristics are more 
appropriate and the diversity in characterisation 
increases as more types of element are considered. 
Hence, unlike the turbomachine, we cannot assume 
a standard characterisation format with a fixed alloca- 
tion of independent-, dependent-, and characterising 
variables. This, however, affects the required decod- 
ing process, so characterisation itself must be con- 
sidered first. 

Enumeration and classification of  
3TE characterisations 

There are probably infinitely many ways of eharac- 
terising an element so the following section is con- 
cerned only with conventional characterisations 

Fig 3 

Constant value 
of supply pressure, 
es 

f 
Control pressure, ec 

Constant-es vortex amplifier characteristics 
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analogous to those used for ETMs,  jet p u m p s  and 
even transistors. We have  to allocate therefore  the 
fo l lowing types of character is ing variables amongst  
the total n u m b e r  of six flow and pressure differences: 

The  independen t  var iable  held  constant  
The  second, varying independen t  var iable  
T w o  dependen t  variables 

The  al locations can be enumera ted  as follows using 
the vortex amplif ier  variables  as an example:  

T w o  independen t  variables can be chosen in 
15 ways f rom the 6 variables. Three  of these alloca- 
tions are pairs of flows and  three are pairs of pressures. 

Consider  the three flow pairs. The  independen t  
variables  cannot  include a flow var iable  so this con- 
straint limits the al locations of these to six as indicated 
in the fol lowing:  

Dependen t  Variables Independen t  Variables 
Constant  2nd 

e s 

q, qc / es 
! 3 choices ec 

q, qo ~ f rom the 
flOWS e~ 

ex 
qc qo / ) Cx 

~ c "  

ex 

es 6 choices 
f rom the ex 
pressures 

es 

ec 

The  total n u m b e r  of al locations in which  both  
the dependen t  variables are flows is therefore  3 × 6 = 
18. This  set of al locations can be descr ibed as an 
' i m p e d a n c e '  type of characterisat ion because  the 
pressure is regarded as a funct ion of the flow. Suppose 
now that  'pressure '  is subst i tuted for ' f low'  in the 
previous  set of al locations we get another  set of 18 in 
which  both  dependen t  variables  are pressures. These  
are analogous to admi t tance  characterisations. 

It  is convenient  to refer col lect ively to bo th  
sets, 36 allocations in total, as ' hom ogeneous '  since 
the dependen t  variables are of one type  (as are the 
independen t  variables). 

The  remain ing  allocations are ' hyb r id '  with 
flows and pressures appear ing  as both  dependen t  and 
independen t  variables. The  enumera t ion  of these can 
be done  by  considering a par t icular  allocation. 

Dependen t  Constant  2nd 
qs es qe ec 

There  are (15-6) ways to choose the dependen t  vari- 
ables. Hav ing  done this, the constant  i ndependen t  
var iable  can be chosen freely f rom the remain ing  4 
unselected variables; qc is chosen in the example.  The  
second independen t  var iable  cannot  now be a flow 
because  two flows have  already been used so there 
are only  the two remain ing  pressures to choose from, 
ie ec or ex; ec was actual ly  chosen. The  total n u m b e r  
of hybr id  al locations is therefore  given by: 

( 1 5 - 6 ) x 4 x 2 = 7 2  

So the total n u m b e r  of characterisat ions is: 

7 2 + 3 6  = 108 

I f  a dist inct ion is made  be tween  the two dependen t  
variables,  ie if one is more  impor tan t  than  the other, 
then  this n u m b e r  is doubled.  T h e  main  point  is that  
any decoding  procedure  must  take account  of the 
diversi ty in characterisation.  The  classification of 
types of characteristics, however ,  suggests that  a 
p roper ly  general ised system of decoding  a lgor i thms 
should be  able to deal wi th  any of them.  

Some properties of E3TE 

Hav ing  already discussed the E T M  it is conven ien t  
to draw analogies be tween  it and the E 3 T E .  

Being character ised by  two flows and two 
pressures, the E 3 T E  is similar to the E T M  if the speed 
and the torque are regarded like a flow and a pressure. 
Euler ian  s imil i tude for the E 3 T E  can be expressed 
in the same way as for the ETM,  ie, if all the flows 
are mul t ip l i ed  by  a factor  m and all pressure drops  
mul t ip l i ed  by  m 2 then  the newly  der ived values 
represent  an operat ing point.  Nondimens iona l i sed  
characterist ics are constant  and  logar i thmic  plots can 
be used as descr ibed by  Tippet t s  and  Royle 3 for solv- 
ing circuit  problems.  

Differences arise because  a 3- terminal  e lement  
can be connec ted  into a ne twork in m a n y  different 
ways and its operat ion can be subject to a wider  var iety 
of constraints. 

Decoding  can be done in various ways similar  
to the ETM.  Method  1 requires that a specified vari- 
able is held  constant th roughou t  an array, the reby  
incurr ing a large n u m b e r  of calculat ions for each 
decoded  point.  

Method  2 for the E 3 T E  requires the storage of 
5 arrays of the data each with  a different var iable  held  
constant.  This  requires 15p + 5 m e m o r y  locations for 
p data points. 

Method  3 requires less storage and is descr ibed 
next. 

Decoding method 3 for E3TE 

Definition of general variables 

To s impl i fy  the notat ion and to al low general i ty  it is 
convenien t  to use unsubscr ip ted  variables g rouped  so 
that pressures and flows can be in te rchanged  accord- 
ing to the two allocations: 
1st. Allocation 

a b and c are inflows 

x y and  z are pressure differences 

2nd. Allocation 

a b and  c are pressure differences 

x y and z are inflows 

A zero-sum s ign  conven t ion  is used so that  for bo th  
allocations: 

a+b+c=O and x+y+z=O 

No relat ionship is assumed be tween  the posi t ion of 
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the flows and the pressure differences, ie x can be the 
pressure difference be tween any two terminals qui te  
irrespective of to which  terminal  a is an inflow. In 
all allocations, however:  

a is the constant variable. 
b is the second independen t  variable in homo- 
geneous characterisations with x and y being the 
dependen t  variables. 
x is the second independen t  variable in hybr id  
characterisations with b and y being the dependen t  
variables. 
c and z are the ' r edundant '  variables. 

Pre-calculated variables and functions 

For  each variable-pair  various coefficients (ratios or 
simple funct ions whose values are denoted  by  r l r 2 -  
r,) are listed in Table  1. Each  coefficient (listed in 
two equivalent  forms in the 2nd and 3rd columns) is 
invariant  under  an Euler ian  data t ransformation and 
is given by explicit  funct ions of the 2nd independen t  
variables in the last two columns.  

In row 1, B is defined as the normalised 
independen t  variable for homogeneous  characterisa- 
tions. It is ei ther a ratio of flows or a ratio of pressure- 
drops. For  hybr id  characterisations B is a dependen t  
variable given by the normalised characterising 
funct ion  FB. 

In row 2, C is given as the result of summing 
pressure or flows. This summat ion is referred to as a 
'Kirchhoffian'  relat ionship which  results from the fact 
that Kirchhoff 's  laws apply  to the 3-terminal element.  
The  calculat ion is so simple that it is unnecessary to 
store the result. 

In row 3, X is defined as the dependen t  variable 
given by the characterising funct ion F~ in terms of B 
for homogeneous  characterisations or as the indepen-  
dent  variable for hybr id  characterisations. In this case 
X is ei ther of the form e / q  2 or q / e  1/2. 

Row 4 defines the second characterising 
funct ions while  row 5 defines the 3rd normal ized 

T a b l e  1 

Variable Coefficient Functions giving 
pair q r2 . . .  r~s coefficients explicitly 

Symbol or 
equivalent Homo- Hybrid 
form geneous 

1 a b  b / a  B 
2 a c c / a  C 
3 a x anx X 
4 a y a"y Y 
5 a z a"z Z 
6 b c c / b  C/B 
7 b x b"x B"X 
8 b y b"y B"Y 
9 b z b"z B"Z 

10 c x cnx cnx 
11 c y cny cny 
12 C Z cnz C"Z 
13 x y y / x  Y / X  
14 x z z / x  Z / X  
15 y z z / y  Z / Y  

B (ind. var.) B=FB(X) 
C = - B - 1  

X=Fx(B ) X ind. variable 
Y=Fy(B) Y=Fy(X) 
Z=Fs(B) = Fs(X) 

= Fs(B) = Fe(X) 
= FT(B) = FT(X) 
=Fs(B ) = F,(X) 

etc. to F~: functions giving r- 
values in terms of B or X. 

Note n = - 2  if a is flow and -½ if a is pressure 
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dependen t  variable Z. This is obta ined by simple 
summation,  ie: 

Z = - X - Y  (this is Fs) 

but  Y, at least, is always a dependen t  variable so that, 
in decoding,  this summation would  occur  for each 
data point  in the characteristics not just once for each 
variable-pair. Hence  it is justifiable to store the result 
despite the simplicity of the funct ion/ ; '5 .  

Rows 6-15 define funct ions /;'6 to F15 which  
give the coefflcients explicit ly in terms of B or X. The  
form of the functions are indicated by the normalised 
representat ion of r in the third co lumn and are simple 
funct ion of B, C, X, Y or Z. In fact the funct ions F9 
and F12 are simple summations of other funct ions ie: 

Fg = - F T -  Fs  

F]2 = - F l o -  F1] 

but  the results are worth pre-calculat ing and storing 
for the same reason as for/75. 

Although there are 15 variable-pairs, not all 
the funct ions have to be pre-calculated and stored 
because Kirchhoffian relationships reduce  the number  
of distinct variable-pairs for decoding.  Thus,  if the 
variable pair a, b can be decoded  a, c or c, b can also 
be decoded  by first conver t ing these to the variable- 
pair a, b. For  this reason the values of funct ions Fz,  
F6, F14 and F15 do not have to be precalculated and 
stored. The  total number  of storage locations needed  
is therefore  l l p  for p operat ing points. 

Generalised decoding algorithms for E3TE 

Decoding  algorithms for each of the 15 possible vari- 
able-pairs are listed in Table  2 using the same type 
of notat ion as for the ETM.  Some extra explanation 
is appropria te  so consider a specific algori thm, say, 
that in row 11: 

Tab le  2 G e n e r a l  f o r m  of  d e c o d i n g  a lgor i thms  
for  E3TE 

Given 
variable 
pair 

Homogeneous Hybrid 

l a b  
2 a c  
3 a x  
4 a y  
5 a z  
6 b c  
7 b x  
8 b y  
9 b z  

l O c x  
11 c y  
1 2 c z  

1 3 x y  
1 4 x z  

15 y z  

F~x. Fry 
b, then same as 1 
F~ 1Fvyb 
Fy 1Fxxb 
F; 1Fxxb 
a, then same as 1 
F~l aFyy 
F; ~ aFxx 
F; ~ aFxx 
F~CaFyy 
F~ CaFxx 
F~ CaFxx 
F~ Fxab 
y, then same as 13 
x, then same as 13 

F B 1Fyyx 
b, then same as 1 
Feb' Fyy 
F~, 1Fsbx 
F~ 1FBbx 
a. then same as 1 
F;l aFyy 
F; 1F.ax 
F; 1FBax 
F~ aFyy 
F;~ F~,ax 
F ~: & Cax 
Fl~ aFeb 
y, then same as 13 
x, then same as 13 
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The given variables are c and y. If they relate 
to a homogeneous characterisation, and in particular 
an impedance type (a, b and c being flows) then firstly 
the coefficient y / c  ~ is calculated and the correspond- 
ing value of B found by inverting the auxiliary func- 
tion Fl l .  The value of C is then calculated from the 
simple Kirchhoffian relationship which then allows 
a to be found from: 

a = c / C  

The characterising function Fx is then used to find X 
in an explicit function of B. x is then found using: 

x =  g a  

At this point two pressures and two flows are known 
so if the third pressure or flow variables are wanted 
they can be found easily by a Kirchhoffian relation- 
ship. This final step is not listed because it applies to 
all the algorithms. 

Note that other algorithms could have been 
used. For example, in the second step instead of find- 
ing C, the newly found value of B could have been 
used with Fx to get X and then a from: 

a = x / X  

This is a seemingly straightforward sequence but the 
only way to progress is by evaluating Fy to give, 
ultimately, the second pressure variable y. The 
algorithm would be symbolised by: 

F ~ F x a F , , x  (then y and b found) 

But this is less efficient than that listed in the table 
because evaluating Fy is more complicated than the 
summation needed to get C. 

For the hybrid characterisation, with a being 
. i/2 • a pressure for example, the coefficmnt y /c  is formed 

and then used in FH to find X. This is then used in 
the characterising function Fy to give Y which is used 
to find a from: 

a =  y / Y  

The value of x is found similarly in the fourth step by: 

x = a X  

Finally, Kirchhoffian relationships would give the 
third pressure and flow variables if needed. This step 
is not symbolised in the algorithm. 

Various comments may be made by considering 
the whole table of algorithms. Note that in algorithms 
2, 6, 14 and 15 Kirchhoffian relationships are used as 
a first step so that decoding is then done by already- 
specified algorithms. This does not actually introduce 
another step because they yield 5 of the 6 variables 
so only one further step is needed at the end whereas 
the other algorithms need two. Judicious specification 
of the sequences means that no more than two stored 
functions are evaluated in any algorithm and no more 
than one function is inverted. 

Comparison of the homogeneous and hybrid 
algorithms shows that more homogeneous algorithms 
have more than 4 steps than the hybrid algorithms. 
This does not mean that the hybrid characterisation 
is more efficient because 14 of the hybrid algorithms 
include the inversion of a function whereas there are 
only 12 such homogeneous algorithms. Normally this 
would favour the homogeneous characterisation. 

D e c o d i n g  e x a m p l e  

Consider a vortex amplifier described by the ad- 
mittance type of homogeneous characterisation 
frequently used. The steps needed in a computer- 
implemented decoding process are as follows. 

Step 1 Characterising data 

The significance of the variables and the sign conven- 
tion for flows and pressure-drops must be given by 
setting up the following correspondence of variables: 

a = es constant independent variable 

b = - e c  2nd (varying) independent variable 

c = ex 3rd redundant pressure variable 

x = qs main dependent variable 

y = q~ secondary dependent variable 

z = qo 3rd redundant flow variable 

Since a, b and c are pressures, the exponent n is equal 
to 1 .  

Raw data is supplied representing p operating 
points in the form esecqsqc making a total of 4p values 
or 3 p + l  if e, is accurately constant at one value 
throughout. In fact, because of the normalised rep- 
resentation of the data created in the pre-calculation 
stage, e, does not have to be constant. In principle, 
therefore, the input data could be randomly scattered 
points but usually there are reasons for having a fairly 
orderly form for the data. 

Step 2 Pre-calculation 

The following coefficients are calculated for each of 
the p points: 

B = e d  es 

F,, = q~/e~/2 

£ y  = q c / e ' / 2  

F5 = - (  qc + qs) / e ~/2 = - F , , -  F,¢ 

F7 = q~/e~/z 

Fs  = qc/  e~/2 

F9 = - (  q, + q~) / e ~/z = -F . r  - Fs  

F ie  = q,/( e c -  e , )  x/2 

F11 = qU(  e c -  e~) 1/2 

F12 = - (  q~ + q,) /(  e ~ -  e,) x/2 = - F i e -  F l l  

F13 = qdq, 

These would occupy l i p  memory locations and 
would enable any variable-pair to be decoded. 
Obviously, if only specific variable-pairs needed 
decoding, less of these functions would need to be 
calculated and stored. 
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S t e p  3 D e c o d i n g  

As an example of the calculations needed to decode  
a part icular  variable-pair,  consider algori thm 12: 

given qo and e~ 
(1) Let  f, = qo/el,/2 
(2) Search for r amongst  the listed values of F12, Let  

r ,  and %+1 be the values below and above r and 
B,,  B,+I, Xn and X,+l be the corresponding values 
of B and X. 

(3) Using linear interpolat ion to find B: 

let m = ( f , -  f 'n)/(rn+l - -  f'n) 

B = m(Bn+l-Bn)+B. 

(4) c = - B  - 1 
(5) a = c/C ie e, is found  
(6) X = m ( X . + t - X . ) + X .  
(7) x = aX ie qs is found  
(8) q~=qo-qsand e~=e~+e~ 
Using the linear interpolat ion as indicated in steps 3 
and 6, this process needs the fol lowing operations: 

9 summations 
3 mult ipl icat ions 
3 divisions 
1 square root 
1 search for a value amongst  a list of p values. 

Other  algorithms differ slightly in the number  of some 
of the operations, but  this inventory  gives a measure 
of the complexi ty  of the process. 

In pract ice there are other  important  consider- 
ations which  are fairly common  knowledge.  One is 
the monoton ic i ty  of the various funct ions and how 
this, or the lack of it, influences the search and interpo- 
lation procedures.  Suitable ordering of the data to 
facilitate this could  be an important  part of the pre- 
calculations. 

Graphical decoding using logarithmic plots 
Decoding  can be done graphical ly  as descr ibed here 
for the vortex amplifier. 

The  characteristics are plot ted logari thmical ly  
as shown in Fig 4. The  basic constant-es characteristics 
are supplemented  by five auxiliary plots which  
al together  give q,, qc, qo and qc/q~ as funct ions of e~ 
and q,, qc and qo as funct ions of e~. On a linear plot 
the funct ions of ex would  just be hor izontal ly  shifted 
versions of the funct ions of e~ but  on the logari thmic 
plot they are distorted so they are not redundant .  The  
plot t ing of these funct ions is analogous to the pre- 
calculations done in the compute r - implemented  
scheme. 

The  whole  set of characteristics are considered 
to be on a movable  overlay which  can be shifted 
diagonal ly  along a fixed path at a gradient  of ½ on the 
logari thmic grid. (The scale for the q~/q~ characteris- 
tic must be regarded as fixed to the overlay but  all 
the others have 'disembodied" scales). 

Decoding  depends slightly on which  groups of 
variables are given. The  three fo l lowing examples 
cover  these different groups. 
(1) Suppose the values given are two flows, ie qog and 

q~g. The  third flow q~ is calculated and then the 
ratio qJqsg, which  is identified as a point  on the 

Operating point of Eulerian flow machines 

Value of es 

q° ~ qo 

q= 

qc 

Functions 
of ex / I °1¢ec 

Pressure 

Fig 4 Logarithmically plotted characteristics of 
vortex amplifier including auxiliary functions 

unshif ted qc/qs characteristic. Vertically a l igned 
with this point  is a point  on the qo ~ ec characteris- 
tic which  is then shifted diagonal ly with the over- 
lay until  its ordinate is equal  to qog. The  shifted 
position of the point  gives the value of ec and the 
value of e, is given by  the new position of the 
constant-es marker (a vertical line on the overlay). 

(2) Suppose the values given are exg and qsg. A point  
with these coordinates is identified and then the 
overlay shifted so that the qs~ e, characteristic 
passes through it. The  vertically al igned points on 
the other  'ex' characteristics give qc and qo. The  
shifted position of es again gives its value. 

(3) Suppose the values given are esg and ec. The  over- 
lay is shifted until  es has the value esg and then 
the values of qs, qc and qo are read-off from the 
'e~' characteristics at the value ecg. 

If the characteristics are not on a movable  over- 
lay, the effect of shifting can be synthesised by  draw- 
ing sequences of lines ei ther vertically, hor izontal ly  
or at a gradient  of ~. 

Similar graphical  methods  can be devised to 
cope with other  devices and characterisations. 

Non-Eulerianarity 
In pract ice the range within which  Euler ian  Simili- 
tude  prevails is b o u n d ed  by  funct ions of Reynolds  
number  and Mach or Cavitat ion number.  Con- 
sequent ly  these constraints would  general ly have to 
be inc luded  in the overall characterisation and decod- 
ing scheme but  this is a familiar aspect of fluid 
mechanics  so it has not been described. 
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C o n c l u s i o n  

When many operating points of an ETM must be 
found, the decoding algorithms given earlier are rec- 
ommended. Most, if not all, of these are represented 
by various methods scattered in the existing literature 
of turbomachines but here they are gathered together 
and put in a computationally efficient form. The 
coefficients in the section describing method 3 are 
identical or equivalent to quantities which also occur 
in the literature, but for the purpose of decoding they 
have been put in the simplest form. This shows that 
their origin is strongly based on combinatorial 
features of the relationships governing the ETM in 
addition to the well known relationships which ulti- 
mately derive from Newton's laws. 

For the 3-terminal elements, although the fluid 
mechanics is no more complicated than for the ETM, 
the combinatorial relationships a r e  more complicated. 

Since there is no universal way of characterisa- 
tion, the total number of characterisations was investi- 

gated and shown to be 108, or 216 if the dependent 
variables are treated as distinct. Despite this diversity, 
only two classes of characterisation need to be distin- 
guished and so, by using coefficients analogous to 
those for the ETM, a comprehensive set of decoding 
algorithms could be specified as given in Table 2. 
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I O01  REVIIEW 
Numerical Properties and Methodologies in Heat Transfer 
Ed. T. M. Shih 

This handsome volume is the first Proceedings 
publication in the series in 'Computational Methods 
in Mechanics and Thermal Sciences', with W. J. 
Minkowycz and E. M. Sparrow as series editors. It is 
the final 'reviewed and revised' form of the papers 
for the US Second National Symposium on Numerical 
Methods in Heat Transfer, held in Mayland in Sep- 
tember 1981. The book comprises thirty-two papers 
including six invited reviews. 

In numerical heat transfer one may now discern 
two parallel trends: the development of alternative 
methods and application to increasingly complex 
problems. This publication is particularly rich in the 
first aspect, this being evident not just in the fine 
review papers and specific method studies. The final 
paper on one-dimensional enclosed flames, for 
example, gives a thorough comparison of no less than 
nine, mainly finite-difference, methods for that 
problem. 

The review papers are authoritative and 
satisfying. They are also readable for those with 
some prior knowledge of the subject. The introduc- 
tory trio survey respectively finite-difference methods 
for parabolic equations, variational principles, and a 
finite-difference/finite element comparison. They 
form a well-chosen and well-balanced overview of 
alternative methods. The other reviews cover singular 
perturbation problems, multi-phase flow phenomena 
and radiation. 

Applications include free convection in 
enclosures, external flows, two-phase flows, radiation, 
and fires and combustion. Here, perhaps, the book is 

not so strong since the number of papers is rather 
limited in a given topic. In this and other respects the 
philosophy and impact of the book are complemen- 
tary to those of the proceedings of the biennial 
numerical methods conferences originating from Uni- 
versity College, Swansea, U.K. 

The title, then, fairly reflects the emphasis of 
the book. The cost, $69.50, is not unreasonable for a 
quality production containing much material. It 
forms a source book for knowledge of available 
methods for different heat transfer situations. Here, 
perhaps, an (obvious) proviso should be made. While 
the study of method is essential, it is of necessity done 
for the simpler problem, and the desired application 
introduces variables which themselves can affect 
the numerical properties of the method. However, 
the very number of alternatives possibly contains the 
necessary warning: in leaving the familiar solved 
problem for the complex unknown, the choice of 
method must be made with care. D. Brian Spalding's 
comment in a specific context surely has some general- 
ity: 'Proceed cautiously; you are on your own'. I feel 
this book is a good reflection both of the current 
potential of numerical methods in heat transfer, and 
of the effort needed in their application. 
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